
5 Interaction by particle exchange

In the modern understanding of particle physics, the interactions between par-
ticles are mediated by the exchange of force carrying gauge bosons. The rig-
orous theoretical formalism for describing these interactions is Quantum Field
Theory, which is beyond the scope of this book. Here the concepts are devel-
oped in the context of relativistic quantum mechanics. The main purpose of
this short chapter is to describe how interactions arise from the exchange of
virtual particles and to provide an introduction to Quantum Electrodynamics.

5.1 First- and second-order perturbation theory

In quantum mechanics, the transition rate Γ f i between an initial state i and a final
state f is given by Fermi’s golden rule Γ f i = 2π|T f i|2ρ(E f ), where T f i is the transi-
tion matrix element, given by the perturbation expansion

T f i = 〈 f |V |i〉 +
∑

j!i

〈 f |V | j〉〈 j|V |i〉
Ei − E j

+ · · · .

The first two terms in the perturbation series can be viewed as “scattering in a
potential” and “scattering via an intermediate state j” as indicated in Figure 5.1. In
the classical picture of interactions, particles act as sources of fields that give rise
to a potential in which other particles scatter.

In quantum mechanics, the process of scattering in a static potential corres-
ponds to the first-order term in the perturbation expansion, 〈 f |V |i〉. This picture of
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!Fig. 5.1 Scattering in an external potential V! and scattering via an intermediate state, j.
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!Fig. 5.2 Two possible time-orderings for the process a + b → c + d.

scattering in the potential produced by another particle is unsatisfactory on a
number of levels. When a particle scatters in a potential there is a transfer of
momentum from one particle to another without any apparent mediating body.
Furthermore, the description of forces in terms of potentials seems to imply that
if a distant particle were moved suddenly, the potential due to that particle would
change instantaneously at all points in space, seemingly in violation the special
theory of relativity. In Quantum Field Theory, interactions between particles are
mediated by the exchange of other particles and there is no mysterious action at a
distance. The forces between particles result from the transfer of the momentum
carried by the exchanged particle.

5.1.1 Time-ordered perturbation theory

The process of interaction by particle exchange can be formulated by using time-
ordered perturbation theory. Consider the particle interaction, a+b→ c+d, which
can occur via an intermediate state corresponding to the exchange of a particle X.
There are two possible space-time pictures for this process, shown in Figure 5.2. In
the first space-time picture, the initial state |i〉 corresponds to the particles a+b, the
intermediate state | j〉 corresponds to c + b + X, and the final state | f 〉 corresponds
to c + d. In this time-ordered diagram, particle a can be thought of as emitting the
exchanged particle X, and then at a later time X is absorbed by b. In QED this
could correspond to an electron emitting a photon that is subsequently absorbed by
a second electron. The corresponding term in the quantum-mechanical perturbation
expansion is

T ab
f i =

〈 f |V | j〉〈 j|V |i〉
Ei − E j

=
〈d|V |X + b〉〈c + X|V |a〉

(Ea + Eb) − (Ec + EX + Eb)
. (5.1)

The notation T ab
f i refers to the time ordering where the interaction between a and X

occurs before that between X and b. It should be noted that the energy of the inter-
mediate state is not equal to that of the initial state, E j ! Ei, which is allowed for a
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short period of time by the energy–time uncertainty relation of quantum mechan-
ics given by Equation (2.47). The interactions at the two vertices are defined by the
non-invariant matrix elements V ji = 〈c + X|V |a〉 and V f j = 〈d|V |X + b〉. Following
the arguments of Section 3.2.1, the non-invariant matrix element V ji is related to
the Lorentz-invariant (LI) matrix elementM ji by

V ji =M ji

∏

k

(2Ek)−1/2,

where the index k runs over the particles involved. In this case

V ji = 〈c + X|V |a〉 = Ma→c+X

(2Ea2Ec2EX)1/2
,

whereMa→c+X is the LI matrix element for the fundamental interaction a→ c+ X.
The requirement that the matrix elementMa→c+X is Lorentz invariant places strong
constraints on its possible mathematical structure. To illustrate the concept of inter-
action by particle exchange, the simplest possible Lorentz-invariant coupling is
assumed here, namely a scalar. In this case, the LI matrix element is simply
Ma→c+X = ga, and thus

V ji = 〈c + X|V |a〉 = ga

(2Ea2Ec2EX)1/2
,

and the magnitude of the coupling constant ga is a measure of the strength of the
scalar interaction. Similarly

V f j = 〈d|V |X + b〉 = gb

(2Eb2Ed2EX)1/2
,

where gb is the coupling strength at the b + X → d interaction vertex. Therefore,
with the assumed scalar form for the interaction, the second-order term in the per-
turbation series of (5.1) is

T ab
f i =

〈d|V |X + b〉〈c + X|V |a〉
(Ea + Eb) − (Ec + EX + Eb)

=
1

2EX
· 1

(2Ea2Eb2Ec2Ed)1/2
· gagb

(Ea − Ec − EX)
. (5.2)

The LI matrix element for the process a+b→ c+d is related to the corresponding
transition matrix element by (3.9),

Mab
f i = (2Ea2Eb2Ec2Ed)1/2T ab

f i ,

and thus from (5.2),

Mab
f i =

1
2EX

· gagb

(Ea − Ec − EX)
. (5.3)

The matrix element of (5.3) is Lorentz invariant in the sense that it is defined in
terms of wavefunctions with an appropriate LI normalisation and has an LI scalar
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νµ νµµ- µ-!Fig. 5.3 The two lowest-order time-ordered diagrams contributing to e−νµ→ νeµ
− scattering.

form for the interaction. It should be noted that for this second-order process in
perturbation theory, momentum is conserved at the interaction vertices but energy
is not, E j ! Ei. Furthermore, the exchanged particle X satisfies the usual energy–
momentum relationship, E2

X =p2
X +m2

X , and is termed “on-mass shell”.
The second possible time-ordering for the process a+ b→ c+ d is shown in the

right-hand plot of Figure 5.2 and corresponds to b emitting X̃ which is subsequently
absorbed by a. The exchanged particle X̃ in this time-ordering is assumed to have
the same mass as X but has opposite charge(s). This must be the case if charge is to
be conserved at each vertex. For example, in the process of e−νµ → νeµ

− scattering,
shown Figure 5.3, one of the time-ordered diagrams involves the exchange of a W−

and the other time-ordered diagram involves the exchange of a W+. In the case of
a QED process, there is no need to make this distinction for the neutral photon.

By repeating the steps that led to (5.3), it is straightforward to show that the LI
matrix element for the second time-ordered diagram of Figure 5.2 is

Mba
f i =

1
2EX

· gagb

(Eb − Ed − EX)
.

In quantum mechanics the different amplitudes for a process need to be summed
to obtain the total amplitude. Here the total amplitude (at lowest order) is given by
the sum of the two time-ordered amplitudes

M f i =Mab
f i +Mba

f i

=
gagb

2EX
·
(

1
Ea − Ec − EX

+
1

Eb − Ed − EX

)
,

which, using energy conservation Eb − Ed = Ec − Ea, can be written

M f i =
gagb

2EX
·
(

1
Ea − Ec − EX

− 1
Ea − Ec + EX

)

=
gagb

(Ea − Ec)2 − E2
X

. (5.4)

For both time-ordered diagrams, the energy of the exchanged particle EX is related
to its momentum by the usual Einstein energy–momentum relation, E2

X = p2
X +m2

X .
Since momentum is conserved at each interaction vertex, for the first time-ordered
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process pX = (pa −pc). In the case of the second time-ordered process pX̃ =

(pb −pd)=− (pa −pc). Consequently, for both time-ordered diagrams the energy
of the exchanged particle can be written as

E2
X = p2

X + m2
X = (pa −pc)2 + m2

X .

Substituting this expression for E2
X into (5.4) leads to

M f i =
gagb

(Ea − Ec)2 − (pa − pc)2 − m2
X

(5.5)

=
gagb

(pa − pc)2 − m2
X

,

where pa and pc are the respective four-momenta of particles a and c. Finally writ-
ing the four-momentum of the exchanged virtual particle X as

q = pa − pc,

gives

M f i =
gagb

q2 − m2
X

. (5.6)

This is a remarkable result. The sum over the two possible time-ordered diagrams
in second-order perturbation theory has produced an expression for the interaction
matrix element that depends on the four-vector scalar product q2 and is therefore
manifestly Lorentz invariant. In (5.6) the terms ga and gb are associated with the
interaction vertices and the term

1
q2 − m2

X

, (5.7)

is referred to as the propagator, is associated with the exchanged particle.

5.2 Feynman diagrams and virtual particles

In Quantum Field Theory, the sum over all possible time-orderings is represented
by a Feynman diagram. The left-hand side of the diagram represents the initial
state, and the right-hand side represents the final state. Everything in between rep-
resents the manner in which the interaction happened, regardless of the ordering
in time. The Feynman diagram for the scattering process a + b → c + d, shown in
Figure 5.4, therefore represents the sum over the two possible time-orderings. The
exchanged particles which appear in the intermediate state of a Feynman diagram,
are referred to as virtual particles. A virtual particle is a mathematical construct
representing the effect of summing over all possible time-ordered diagrams and,
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!Fig. 5.4 The relation between the Feynman diagram for a+b→ c+d scattering and the two possible time-ordered
diagrams.

where appropriate, summing over the possible polarisation states of the exchanged
particle.

From (5.5) it can be seen that the four-momentum q which appears in the propa-
gator is given by the difference between the four-momenta of the particles entering
and leaving the interaction vertex, q= pa − pc = pd − pb. Hence q can be thought of
as the four-momentum of the exchanged virtual particle. By expressing the inter-
action in terms of the exchange of a virtual particle with four-momentum q, both
momentum and energy are conserved at the interaction vertices of a
Feynman diagram. This is not the case for the individual time-ordered diagrams,
where energy is not conserved at a vertex. Because the q2-dependence of the prop-
agator is determined by the four-momenta of the incoming and outgoing particles,
the virtual particle (which really represents the effect of the sum of all time-ordered
diagrams) does not satisfy the Einstein energy–momentum relationship and it is
termed off mass-shell, q2 !m2

X . Whilst the effects of the exchanged particles are
observable through the forces they mediate, they are not directly detectable. To
observe the exchanged particle would require its interaction with another particle
and this would be a different Feynman diagram with additional (and possibly dif-
ferent) virtual particles.

The four-momentum q which appears in the propagator can be determined from
the conservation of four-momentum at the interaction vertices. For example,
Figure 5.5 shows the Feynman diagrams for the s-channel annihilation and the
t-channel scattering processes introduced in Section 2.2.3. For the annihilation pro-
cess, the four-momentum of the exchanged virtual particle is

q = p1 + p2 = p3 + p4,

and therefore q2 = (p1 + p2)2 which is the Mandelstam s variable. Previously (2.13)
it was shown that s= (E∗1 + E∗2)2, where E∗1 and E∗2 are the energies of the initial-
state particles in the centre-of-mass frame. Consequently, for an s-channel pro-
cess q2 > 0 and the exchanged virtual particle is termed “time-like” (the square of
the time-like component of q is larger than the sum of the squares of the three
space-like components). For the t-channel scattering diagram of Figure 5.5, the
four momentum of the exchanged particle is given by q= p1 − p3 = p4 − p2. In this
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!Fig. 5.5 Feynman diagrams for illustrative s-channel annihilation and t-channel scattering processes.

case q2 is equal to the Mandelstam t variable. In Chapter 8 it will be shown that, for
a t-channel process, q2 is always less than zero and the exchanged virtual particle
is termed “space-like”.

5.2.1 Scattering in a potential

The covariant formulation of a scalar interaction in terms of the exchange of (vir-
tual) particles leads to a Lorentz-invariant matrix element of the form

M f i =
gagb

q2 − m2
X

. (5.8)

This was derived by considering the second-order term in the perturbation expan-
sion for T f i. It is reasonable to ask how this picture of interaction by particle
exchange relates to the familiar concept of scattering in a potential. For example,
the differential cross section for the scattering of non-relativistic electrons (v& c)
in the electrostatic field of a stationary proton can be calculated using first pertur-
bation theory with

M = 〈ψ f |V(r)|ψi〉 =
∫

ψ∗f V(r)ψi d3r, (5.9)

where V(r) is the effective static electrostatic potential due to the proton and
ψi and ψ f are the wavefunctions of the initial and final-state electron. In the
non-relativistic limit, this approach successfully reproduces the experimental data.
However, the concept of scattering from a static potential is intrinsically not
Lorentz invariant; the integral in matrix element of (5.9) only involves spatial
coordinates.

The covariant picture of scattering via particle exchange applies equally in the
non-relativistic and highly relativistic limits. In the non-relativistic limit, the form
of the static potential used in first-order perturbation theory is that which repro-
duces the results of the more general treatment of the scattering process in terms
of particle exchange. For example, the form of the potential V(r) that reproduces
the low-energy limit of scattering with the matrix element of (5.8) is the
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Yukawa potential

V(r) = gagb
e−mr

r
.

In this way, it is possible relate the formalism of interaction by particle exchange
to the more familiar (non-relativistic) concept of scattering in a static potential. For
an interaction involving the exchange of a massless particle, such as the photon,
the Yukawa potential reduces to the usual 1/r form of the Coulomb potential.

5.3 Introduction to QED

Quantum Electrodynamics (QED) is the Quantum Field Theory of the electromag-
netic interaction. A first-principles derivation of the QED interaction from QFT
goes beyond the scope of this book. Nevertheless, the basic interaction and cor-
responding Feynman rules can be obtained following the arguments presented in
Section 5.1.1. The LI matrix element for a scalar interaction, given in (5.6), is
composed of three parts: the strength of interaction at each of the two vertices,
〈ψc|V |ψa〉 and 〈ψd |V |ψb〉, and the propagator for the exchanged virtual particle of
mass mX , which can be written as

M = 〈ψc|V |ψa〉
1

q2 − m2
X

〈ψd |V |ψb〉. (5.10)

In the previous example, the simplest Lorentz-invariant choice for the interaction
vertex was used, namely a scalar interaction of the form 〈ψ|V |φ〉 ∝ g. To obtain the
QED matrix element for a scattering process, such as that shown in Figure 5.6, the
corresponding expression for the QED interaction vertex is required. Furthermore,
for the exchange of the photon, which is a spin-1 particle, it is necessary to sum
over the quantum-mechanical amplitudes for the possible polarisation states.

The free photon field Aµ can be written in terms of a plane wave and a four-vector
ε(λ) for the polarisation state λ,

Aµ = ε
(λ)
µ ei(p·x−Et).
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g

!Fig. 5.6 The Feynman diagram for the QED scattering process e−τ− → e−τ−.
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The properties of the free photon field in classical electromagnetism are discussed
in detail in Appendix D. For a real (as opposed to virtual) photon, the polarisation
vector is always transverse to the direction of motion. Thus, a photon propagating
in the z-direction can be described by two orthogonal polarisation states

ε(1) = (0, 1, 0, 0) and ε(2) = (0, 0, 1, 0).

The fundamental interaction between a fermion with charge q and an electro-
magnetic field described by a four-potential Aµ = (φ,A) can be obtained by making
the minimal substitution (see Section 4.7.5)

∂µ → ∂µ + iqAµ ,

where Aµ = (φ,−A) and ∂µ = (∂/∂t,+∇). With this substitution, the free-particle
Dirac equation becomes

γ µ∂µψ + iqγ µAµψ + imψ = 0. (5.11)

This is the wave equation for a spin-half particle in the presence of the electro-
magnetic field Aµ. The interaction Hamiltonian can be obtained by pre-multiplying
(5.11) by iγ0 to give

i
∂ψ

∂t
+ iγ0γ · ∇ψ − qγ0γ µAµψ − mγ0ψ = 0,

where γ · ∇ is shorthand for γ1 ∂
∂x + γ

2 ∂
∂y + γ

3 ∂
∂z . Since

Ĥψ = i
∂ψ

∂t
,

the Hamiltonian for a spin-half particle in an electromagnetic field can be
identified as

Ĥ = (mγ0 − iγ0γ · ∇) + qγ0γ µAµ. (5.12)

The first term on the RHS of (5.12) is just the free-particle Hamiltonian ĤD already
discussed in Chapter 4, and therefore can be identified as the combined rest mass
and kinetic energy of the particle. The final term on the RHS of (5.12) is the contri-
bution to the Hamiltonian from the interaction and thus the potential energy oper-
ator can be identified as

V̂D = qγ0γ µAµ. (5.13)

This result appears reasonable since the time-like (µ= 0) contribution to V̂D is
qγ0γ0A0 = qφ, which is just the normal expression for the energy of a charge q
in the scalar potential φ.
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The Lorentz-invariant matrix element for the QED process of e−τ−→ e−τ− scat-
tering, shown in Figure 5.6, can be obtained by using the potential of (5.13) for the
interaction at the e−γ vertex (labelled by the index µ)

〈ψ(p3)|V̂D|ψ(p1)〉 → u†e(p3) Qeeγ0γ µε(λ)
µ ue(p1),

where the charge q=Qe is expressed in terms of the magnitude of charge of the
electron (such that Qe =− 1). Since the wavefunctions are four-component spinors,
the final-state particle necessarily appears as the Hermitian conjugate u†(p3)≡
u∗T (p3) rather than u∗(p3). Similarly, the interaction at the τ−γ vertex (labelled
ν) can be written as

u†τ (p4) Qτeγ0γνε(λ)∗
ν uτ(p2).

The QED matrix element is obtained by summing over both the two possible
time orderings and the possible polarisation states of the virtual photon. The sum
over the two time-ordered diagrams follows directly from the previous result of
(5.10). Hence the Lorentz-invariant matrix element for this QED process, which
now includes the additional sum over the photon polarisation, is

M =
∑

λ

[
u†e(p3)Qeeγ0γ µue(p1)

]
ε(λ)
µ

1
q2 ε

(λ)∗
ν

[
u†τ(p4)Qτeγ0γνuτ(p2)

]
. (5.14)

In Appendix D.4.3, it is shown that the sum over the polarisation states of the
virtual photon can be taken to be

∑

λ

ε(λ)
µ ε

(λ)∗
ν = −gµν,

and therefore (5.14) becomes

M =
[
Qee u†e(p3)γ0γ µue(p1)

]−gµν
q2

[
Qτe u†τ(p4)γ0γνuτ(p2)

]
. (5.15)

This can be written in a more compact form using the adjoint spinors defined by
ψ = ψ†γ0,

M = −[Qee ue(p3)γ µue(p1)
]gµν

q2

[
Qτe uτ(p4)γνuτ(p2)

]
. (5.16)

In Appendix B.3 it is shown that the combination of spinors and γ-matrices j µ =
u(p)γ µu(p′) forms as contravariant four-vector under Lorentz boosts. By writing
the four-vector currents

j µe = ue(p3)γ µue(p1) and jντ = uτ(p4)γνuτ(p2). (5.17)

Equation (5.16) can be written in the manifestly Lorentz-invariant form of a four-
vector scalar product

M = −QeQτ e2 je · jτ
q2 . (5.18)
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This demonstrates that the interaction potential of (5.13) gives rise to a Lorentz-
invariant description of the electromagnetic interaction.

5.4 Feynman rules for QED

A rigorous derivation of the matrix element of (5.16) can be obtained in the frame-
work of quantum field theory. Nevertheless, the treatment described here shares
some of the features of the full QED derivation, namely the summation over all
possible time-orderings and polarisation states of the massless photon which gives
rise to the photon propagator term gµν/q2, and the Qeuγ µu form of the QED inter-
action between a fermion and photon. The expression for the matrix element of
(5.16) hides a lot of complexity. If every time we were presented with a new
Feynman diagram, it was necessary to derive the matrix element from first prin-
ciples, this would be extremely time consuming. Fortunately this is not the case;
the matrix element for any Feynman diagram can be written down immediately by
following a simple set of rules that are derived formally from QFT.

There are three basic elements to the matrix element corresponding to the
Feynman diagram of Figure 5.6: (i) the Dirac spinors for the external fermions
(the initial- and final-state particles); (ii) a propagator term for the virtual photon;
and (iii) a vertex factor at each interaction vertex. For each of these elements of the
Feynman diagram, there is a Feynman rule for the corresponding term in the matrix
element. The product of all of these terms is equivalent to −iM. In their simplest
form, the Feynman rules for QED, which can be used to calculate lowest-order
cross sections, are as follows.

initial-state particle: u(p)

final-state particle: u(p)

initial-state antiparticle: v(p)

final-state antiparticle: v(p)

initial-state photon: εµ(p)

final-state photon: ε∗µ(p)

photon propagator: − igµν
q2

fermion propagator: − i(γ µqµ + m)
q2 − m2

QED vertex: −iQeγ µ
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p3

e- e-

τ- τ-

m

ν

g

u(p3)[ieγ µ]u(p1)

−igµν
q2

u(p4)[ieγν]u(p2)!Fig. 5.7 The Feynman diagram for the QED scattering process e−τ−→ e−τ− and the associated elements of the
matrix element constructed from the Feynman rules. The matrix element is comprised of a term for the elec-
tron current, a term for the tau-lepton current and a term for the photon propagator.

It should be noted that in QED, the fundamental interaction is between a single
photon and two spin-half fermions; there is no QED vertex connecting more than
three particles. For this reason, all valid QED processes are described by Feynman
diagrams formed from the basic three-particle QED vertex.

The use of the Feynman rules is best illustrated by example. Consider again the
Feynman diagram for the process e−τ−→ e−τ−, shown in Figure 5.7. The indices
µ and ν label the two interaction vertices. Applying the Feynman rules to the elec-
tron current, gives an adjoint spinor for the final-state electron, a factor ieγ µ for
the interaction vertex labelled by µ, and a spinor for the initial-state electron. The
adjoint spinor is always written first and thus the contribution to the matrix element
from the electron current is

u(p3)[ieγ µ]u(p1).

The same procedure applied to the tau-lepton current gives

u(p4)[ieγν]u(p2).

Finally, the photon propagator contributes a factor

−igµν
q2 .

The product of these three terms gives −iM and therefore

−iM = [
u(p3){ieγ µ}u(p1)

]−igµν
q2

[
u(p4){ieγν}u(p2)

]
, (5.19)

which is equivalent to the expression of (5.16), which was obtained from first prin-
ciple arguments.
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5.4.1 Treatment of antiparticles

The Feynman diagram for the s-channel annihilation process e+e−→ µ+µ− is
shown in Figure 5.8. Antiparticles are represented by lines in the negative time
direction, reflecting the interpretation of the negative energy solutions to Dirac
equation as particles which travel backwards in time. It is straightforward to obtain
the matrix element for e+e−→ µ+µ− from the Feynman rules. The part of the matrix
element due to the electron and muon currents are, respectively,

v(p2)[ieγ µ]u(p1) and u(p3)[ieγν]v(p4),

where v-spinors are used to describe the antiparticles. As before, the photon prop-
agator is

−igµν
q2 .

Hence the matrix element for e+e− → µ+µ− annihilation is given by

−iM = [
v(p2){ieγ µ}u(p1)

]−igµν
q2

[
u(p3){ieγν}v(p4)

]
. (5.20)

The QED matrix element for the s-channel annihilation process e+e−→ µ+µ−
given by (5.20) is very similar to that for the t-channel scattering process e−τ−→
e−τ− given by (5.19). Apart from the presence of the v-spinors for antiparticles,
the only difference is the order in which the particles appear in the expressions for
the currents. Fortunately, it is not necessary to remember the Feynman rules that
specify whether a particle/antiparticle appears in the matrix element as a spinor
or as an adjoint spinor, there is an easy mnemonic; the first particle encountered
when following the line representing a fermion current from the end to the start in
the direction against the sense of the arrows, always appears as the adjoint spinor.
For example, in Figure 5.8, the incoming e+ and outgoing µ− are written as adjoint
spinors.

p2 p4

p1 p3

e- µ-

µ+

µ

e+

ν
g

!Fig. 5.8 The lowest-order Feynman diagram for the QED annihilation process e+e− → µ+µ−.
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Summary

This chapter described the basic ideas behind the description of particle interactions
in terms of particle exchange and provided an introduction to the Feynman rules of
QED. A number of important concepts were introduced. The sum of all possible
time-ordered diagrams results in a Lorentz-invariant (LI) matrix element including
propagator terms for the exchanged virtual particles of the form

1
q2 − m2

X

.

The four-momentum appearing in the propagator term was shown to be determined
by energy and momentum conservation at the interaction vertices.

The matrix element for a particular process is then constructed from propagator
terms for the virtual particles and vertex factors. In QED, the interaction between
a photon and a charged fermion has the form

ieQ u fγ
µui,

where ui is the spinor for the initial-state particle and u f is the adjoint spinor for
the final-state particle. Finally, for each element of a Feynman diagram there is a
corresponding Feynman rule which can be used to construct the matrix element for
the diagram.

Problems

5.1 Draw the two time-ordered diagrams for the s-channel process shown in Figure 5.5. By repeating the steps of
Section 5.1.1, show that the propagator has the same form as obtained for the t-channel process.
Hint: one of the time-ordered diagrams is non-intuitive, remember that in second-order perturbation theory
the intermediate state does not conserve energy.

5.2 Draw the two lowest-order Feynman diagrams for the Compton scattering process γe− → γe−.

5.3 Draw the lowest-order t-channel and u-channel Feynman diagrams for e+e− → γγ and use the Feynman rules
for QED to write down the corresponding matrix elements.


